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Abstract 

The extent of future climate change is a policy choice. Using an integrated climate-economy 
assessment model, we estimate climate policy curves (CPCs) that link the price of carbon dioxide 
(CO2) to subsequent global temperatures. The resulting downward sloping CPCs quantify the 
inverse relationship between carbon prices and future temperatures and illustrate how climate 
policy choices determine climate outcomes. Our analysis can account for a variety of climate 
policies—for example, carbon or fuel taxes, emissions trading programs, green subsidies, and 
energy-efficiency regulations—all of which can be summarized by means of an effective CO2 
price. Importantly, we also examine CPC uncertainty, for example, by perturbing the model’s 
equilibrium climate sensitivity to trace out the temperature range associated with a given CO2 
price. Finally, based on the latest Intergovernmental Panel on Climate Change (IPCC) integrated-
assessment model scenarios, we estimate an implicit CPC, which provides a high-level IPCC 
summary of the climate policy actions required to achieve global climate targets. 
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1. Introduction 

Understanding the linkage between policy instruments and desired outcomes is important 

for the design and calibration of public policy actions. For example, formulating good monetary 

and fiscal policies requires understanding how changes in interest rates or government spending 

affect the economy. For climate policy, quantifying the linkage between policy actions and 

subsequent climate outcomes is also crucial, but this connection has often been difficult to perceive 

given the complexity of the relevant socio-economic and physical climate responses. To better 

understand the efficacy of climate policy, we propose using Climate Policy Curves (CPCs), which 

quantify the relationship between the effective price of carbon dioxide (CO2) and the future 

increase in global temperature.  

CPCs incorporate two important relationships: the link from CO2 prices to emissions and 

the link from emissions to climate outcomes and global temperature. The first link involves 

technology and economics—how much emissions abatement will result from a rise in the effective 

price of CO2, the subject of many recent evaluations (e.g., Andersson, 2019; Bayer and Aklin, 

2020; Best et al., 2020; Leroutier, 2022; Pretis, 2022). This effective CO2 price is a summary 

measure of the entire range of possible energy and climate policies—including carbon and fuel 

taxes, emissions trading programs, green subsidies, energy-efficiency regulations, renewable-

energy mandates, or behavioral interventions. These diverse policy levers can all be broadly 

summarized in terms of a direct price on each ton of CO2 emitted (e.g., Gillingham and Stock 

2018; Gosnell et al. 2020; IMF 2021). In particular, non-price policies can be accommodated by 

reproducing their associated emission reductions with an equivalent carbon price. Similarly, 

policies for other greenhouse gases (GHGs) can be translated into a CO2 equivalence. The second 

link involves climate and earth system science—and depends on how sensitive the earth’s climate 

is to CO2 emissions. We use the global average surface temperature as a summary measure to 

encompass a whole host of other environmental shifts, including rising sea levels, shifted weather 

extremes, and other related climate hazards.  

We obtain CPCs by quantifying these two links using integrated assessment models 

(IAMs). Such models imply a relationship between carbon prices and global temperature 

outcomes, but previous work has typically focused on individual CO2 price paths required to meet 

a specific temperature goal or maximize social welfare (e.g., Dietz and Venmans, 2019; Gerlagh 
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and Liski, 2018; Golosov et al., 2014; Hänsel et al., 2020; Ricke et al., 2018; Traeger, 2022; van 

den Bijgaart et al., 2016). Viewed through the lens of a CPC, these estimates typically provide 

only a single point on the curve. But a complete accounting of climate-economy interactions and 

alternative climate policy choices requires mapping the entire CPC, which describes the climate 

consequences of a wide range of possible carbon policies. 

Thinking about climate policy in terms of the relationship between CO2 prices and global 

temperatures is helpful as it focuses on the key policy question: What climate outcomes will result 

from a given climate policy setting? In this way, CPCs can describe how much higher the effective 

CO2 price path ahead needs to be to reduce future global warming by, say, 0.1ºC. Alternatively, 

CPCs can quantify the climate-economic trade-off between current and future action that 

policymakers face. For example, limiting the global temperature increase to 2°C can be achieved 

with a high initial CO2 price that grows slowly over time or a low initial price that grows rapidly. 

The latter path postpones significant action—and mitigation burden—to the future (Gollier, 2021). 

Thinking about climate policy in terms of CPCs is helpful precisely because it is an important 

simplification of an otherwise complex relationship. Furthermore, comparing CPCs from different 

climate-economy models—including different generations or iterations of the same model—can 

also be useful as a diagnostic tool for assessing alternative IAMs. 

 
2. Quantifying Climate Policy Curves 

To calculate CPCs, we project emissions, CO2 concentrations, and temperature trajectories under 

alternative exogenous paths for the carbon price using the Dynamic Integrated Climate-Economy 

(DICE) model developed by Nordhaus (1992, 2018) as updated by Hänsel et al. (2020). As in the 

baseline scenario of Nordhaus (2018), we rearrange the marginal abatement cost equation to obtain 

the emissions path resulting from a pre-specified CO2 price path. We then vary the CO2 price in 

the first period, assume some growth rate for future CO2 prices, and plot the resulting atmospheric 

temperature in 2100 and at its maximum over the full modelling horizon (see Appendix A for 

details). Panels A and B in Figure 1 show the resulting CPCs. The horizontal axis measures the 

2025 carbon price in constant (2010) US dollars per ton of CO2, which is the initial policy choice 

variable. The vertical axis measures climate outcomes: average global 2100 temperature in panel 

A and the peak temperature in panel B—in both cases relative to the 1850-1900 average. The 

shaded regions are uncertainty bands described in the next section. 
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Figure 1 | Climate Policy Curves. The relationship between the carbon price in 2025 and the global temperature for 
different CO2 price growth rates. Panel A shows global average temperature increases by 2100 (above the 1850-1900 
average), and Panel B shows overall peak global average temperature increases for three exemplary growth rates of 
carbon prices of 2% (red), 4% (green) and 6% (blue). Climate sensitivity uncertainty shaded regions are based on 
‘likely’ ranges (66% probability) for the equilibrium climate sensitivity between 2.5-4°C in IPCC (2022) AR6. All 
prices are in constant 2010 dollars. See Appendix A for a description of methods. 

 

Both the initial level of the effective CO2 price and its expected future growth rate are 

fundamental climate policy choices that determine future emissions and global temperatures. 

Figure 1 plots CPCs for annual CO2 price growth rates of 2, 4, and 6%, which are consistent with 

a survey of expert recommendations that revealed a median growth rate of global carbon prices of 

4.1% from 2020 to 2050, with a 66-percentile range of 2.3% to 6.5% (Drupp et al., 2022).  

Figure 1 illustrates a key climate policy tradeoff. Policymakers need to choose a 

combination of an initial carbon price and its (expected) growth rate to restrain global warming. 

At one extreme, an ambitious climate policy starts with a high initial carbon price and a low 

subsequent growth rate, which may be socially optimal (Hänsel et al., 2020; Nesje et al., 2022). At 

the other extreme, policymakers might start with a low initial carbon price, but promise a high CO2 

price growth rate, which shifts the bulk of the mitigation burden to the future (Gollier, 2021).  
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At very low levels for the initial CO2 price, the CPCs in Panel A imply, in expectation, 

about 3°C of warming above pre-industrial levels by 2100. This is consistent with other analyses 

that analyze current global climate policies, which can be approximated with a global effective 

CO2 price of just a few dollars (see IPCC, 2018, and Raftery et al., 2017). Clearly, climate policy 

needs to be substantially more ambitious to attain the UN climate targets of 1.5°C or 2°C. Figure 

1 reveals combinations of current carbon prices and future growth rates that are consistent with 

these targets. For panel A, at a growth rate of 4%, the green CPC shows that limiting global 

warming to 2°C by 2100 in expectation would require a carbon price around US$50, whereas an 

increase of only 1.5°C could be accomplished with a current carbon price around US$100. If, 

instead, we assume a slower growth rate of only 2%, the requisite current carbon prices rise to 

about US$100 and US$170.  

The UN climate targets are often interpreted as trying to limit the peak rather than the end-

of-century temperature in order to curtail potentially severe and irreversible climate damages (e.g., 

Drouet et al., 2021; IPCC, 2022). Panel B of Figure 1 plots alternative CPCs, which measure the 

climate outcome as the peak temperature before year 2515. At currently very low levels of the 

effective global carbon price, global temperature is substantially higher than in panel A, as 

temperatures continue to rise after 2100, unless the growth rate of the carbon price is quite high. 

Panel B shows that limiting the peak temperature increase to 2°C requires a more ambitious climate 

policy mix—for instance, an initial carbon price of US$70 at a 4% carbon price growth rate. 

Figure 2 elaborates on the CPCs to illustrate further how a broad range of alternative policy 

choices will translate into 2100 (panel A) and peak (panel B) temperatures. These heatmaps 

illustrate how combinations of initial 2025 carbon prices and subsequent carbon price growth rates 

(horizontal and vertical scales, respectively) will result in a given temperature—denoted by color. 

Each CPC in Figure 1 can be represented by a horizontal line in Figure 2. The contour lines for 

1.5°C and 2°C temperature increases in Figure 2 illustrate the combinations of initial 2025 carbon 

prices and subsequent price paths that are compatible with attaining these temperature targets. For 

example, staying below 2°C by 2100 with only a 1% annual increase in carbon prices would 

require an initial 2025 carbon price of more than US$160. By contrast, staying below 2°C at an 

8% growth rate would require a 2025 carbon price of approximately US$25. Finally, panel B 

shows that while limiting peak warming to 2°C is still feasible for ambitious climate policy, the 

1.5°C target is out of reach within the depicted range for carbon prices and growth rates. Figure 2 



 6 

illustrates that the UN climate targets cannot be attained without immediate increases in effective 

carbon prices even assuming sizable future increases in climate policy stringency. 

 
Figure 2 | Climate policy choices and temperature outcomes. Panel A shows a heatmap of global average 
temperature increase by 2100 and Panel B for peak temperature increase for various combinations of initial carbon 
prices in 2025 and annual carbon price growth rates. The temperature color scale is shown on the right. Contours that 
indicate carbon price paths that lead to UN global temperature targets are denoted by white lines. All prices are in 
constant 2010 dollars. See Appendix B for a description of methods. 

 

3. Uncertainty in Climate Policy Curves 

Uncertainty is a central issue for the design and assessment of climate policy. Despite much climate 

science and climate economics research, substantial uncertainty remains about the key climate-

economy interactions (e.g., Gillingham et al., 2018; Nordhaus, 2018). In particular, the CPC’s 

causal chain from carbon prices to global temperatures is subject to socio-economic uncertainties 

in the link from carbon prices to emissions and climate uncertainties in the link from emissions to 

global temperatures. Monte Carlo simulations across probability distributions for model 

parameters have been used to evaluate the sensitivity of IAM implications (e.g., Nordhaus, 2008; 

Nordhaus, 2018). However, scientific knowledge about the relevant probability distributions for 

many model parameters is severely limited. In addition, the multidimensional nature of the 

calculation of CPCs makes Monte Carlo simulations impractical. Instead, we use an intuitive 
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approach to illustrate how uncertainty affects the CPC climate policy tradeoffs: We vary several 

important model parameters in turn from their baseline “best guess” estimate to potential high and 

low plausible boundaries. Plotting CPCs for these values demonstrates how changes in specific 

parameters affect policy tradeoffs. The resulting curve shifts reveal the magnitude of CPC 

changes—in level and shape—in response to changes in a specific parameter, and whether the 

range of parameter choices have symmetric or asymmetric effects on CPCs.  

In Figure 1, the shaded regions reflect uncertainty about the equilibrium climate sensitivity 

(ECS), which measures the temperature change from a doubling of atmospheric carbon. The ECS 

plays an important role in determining the sensitivity of global temperatures to carbon prices. To 

shift the CPCs in Figure 1, we vary ECS within the ‘likely’ range of 2.5°C to 4°C with a baseline 

estimate of 3°C—consistent with the IPCC’s Sixth Assessment report (AR6) (cf. Sherwood et al., 

2020). The higher level of the ECS results in a higher temperature—of about 0.4°C—at any given 

initial carbon price, which makes the Paris goals notably more difficult to achieve. 

In Figure 3, six other sources of parameter uncertainty are considered that affect the slope 

and shape of the CPCs. In contrast to the ECS, there is little guidance in the literature about the 

appropriate empirical probability distributions for these six parameters.  We have considered some 

plausible alternatives, but our CPC analysis using these parameter variations is more exploratory. 

Table 1 provides details on the alternative parameterizations we consider and supporting sources, 

and see the Appendix C for further description.  

Panels A, B, and C of Figure 3 consider three curve shifters that could potentially be 

managed relatively quickly by appropriate policy choices. These are alternative parameterizations 

for the availability of negative emissions technologies (e.g., direct air capture), the cost of carbon 

abatement technologies, and the emissions of greenhouse gasses other than CO2.  
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Figure 3 | Climate policy curve shifters. CPCs for a 4% carbon price growth rate: baseline (green solid lines) and 
under alternative model parameterizations (green shaded areas with dashed lines denoting the upper and lower 
bounds). Panel A shows the effect of making negative emissions technologies available in 2050 and 2100 (green 
solid and dashed lines respectively). Panel B shows the effect of different assumptions on the price of a backstop 
technology in 2050. Panel C shows the effect of higher non-CO2 forcings—the green dashed line corresponds to the 
non-CO2 forcing in Nordhaus (2018). Panel D shows the effect of alternative global population projections for 2050.  
Panel E shows the effect of different assumptions on the rate of decarbonisation. Panel F shows the effect of 
different assumption on the growth rate of total factor productivity (TFP). All prices are in constant 2010 dollars. 
See Appendix C for a description of methods. 

 

The availability of negative emission technologies (Panel 3A) is a critical element for 

meeting the UN climate targets (IPCC, 2018; Fuss et al., 2018). Most IPCC scenarios assume 

availability at scale by around 2050, and we adopt this timing for our baseline estimate (Hänsel et 

al., 2020). As an alternative, we also estimate CPCs assuming negative emission technologies only 

become available in 2100, which is closer to the assumption in the DICE model. Panel 3A shows 

that the later availability of negative emission technologies would shift the CPC upward, notably 

for medium to high carbon prices. This suggests the importance of climate policies that can 

incentivize the timely uptake of these technologies. 
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Model attributes that underlie 

estimation of CPC 

Baseline 

estimate 

Range, 

high end 

Range, 

low end 

Supporting references 

ECS, °C 3 4 2.5 IPCC AR6 

Availability of negative emissions 

technologies at scale, year 

2050 2100 2050 IPCC SP1.5;  

Nordhaus 2018 

Backstop price in 2050, 2015 US$ 

per ton CO2 

461  687  461 Nordhaus 2018; IPCC 

AR6 

Non-CO2 forcing in 2100, W/m2  0.33  1  0.33  REMIND SSP2 2.6; 

Nordhaus 2018 

Decarbonization, % per year -1.52 -0.88 -2.16 Nordhaus 2018 

Initial TFP growth, % per year 1.48 2.35 0.57 Nordhaus 2018, 

Gillingham et al. 2018 

Population in 2050, millions 9,791 9,400 10,000 Nordhaus 2018, United 

Nations 2022 

Tab. 1 | Summary of parametrization for CPC shifters.  

 

The costs of emission abatement (Panel 3B) are a major source of uncertainty for CPCs. 

The DICE model includes a generic backstop technology with an exogenous price path that is 

calibrated such that the marginal cost of abatement, i.e. the carbon price, is equal to the backstop 

price at the time of zero emissions. We vary the exogenous time path for the backstop price to 

account for the uncertainty in abatement costs, similar to Dietz et al. (2018). Specifically, we 

recalibrate the initial backstop price and its yearly decline rate to the interquartile range of 

pathways of emissions and carbon prices of the IPCC AR6 model runs that have at least a 67% 

probability of staying below 2°C. Since the lower IPCC range almost coincides with the DICE 

specification in Nordhaus (2018), Panel 3B considers only the upper end of the IPCC range as a 

curve shifter. The panel shows that uncertainty with respect to abatement costs is relevant for the 

whole range of carbon prices.  

The extent to which non-CO2 emissions (Panel 3C), such as methane emissions from 

agriculture, will be managed in line with the UN climate targets represent another source of 

uncertainty. Our baseline estimate of non-CO2 emissions is aligned with climate scenarios 
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compatible with the UN climate targets (Hänsel et al., 2020). Specifically, the exogenous path for 

non-CO2 forcing is calibrated to peak at 0.59 W/m2 in 2055 and decrease to 0.33 W/m2 by 2100.  

We also consider an alternative DICE assumption, which implies a linear increase in non-CO2 

forcing to 1 W/m2 by 2100. Panel 2C shows that management of non-CO2 emissions is an 

important determinant of level of the CPC, which highlights the significant potential of non-CO2 

mitigation policies to influence climate outcomes. 

The lower three panels of Figure 3 consider variation in growth rates of population, 

decarbonization, and total factor productivity (TFP).  Our baseline assumption for global 

population growth follows Nordhaus (2018), but as an alternative, we assume exogenous 

population dynamics in line with updated UN projections (United Nations 2022). However, Panel 

3D shows that the effect of different assumptions about population dynamics on CPCs is 

negligible.  

The DICE model we use does not distinguish between dirty and clean sectors, so the 

exogenous rate of decarbonization follows the decoupling of economic output and CO2 emissions. 

Our baseline estimate is -1.5% per year, but as alternative assumptions for the CPC, we consider 

the range from -0.88% to -2.16% (Nordhaus, 2018). Panel 3E shows that the speed of decoupling 

matters for the shape of the CPC especially at initial carbon prices below $100. In particular, at 

the high end of the range (slower decarbonization), low to medium initial carbon prices would 

result in higher temperatures in 2100 than under our baseline.    

Panel 3F shows that total factor productivity (TFP) growth is also an important determinant 

of the CPC. Faster productivity growth boosts economic output, which in turn increases CO2 

emissions and temperature. Around our baseline estimate of 1.48% per year, we consider the 66-

percentile range of 0.55 - 2.41% in Nordhaus (2018) and Gillingham et al. (2018). The different 

TPF growth scenarios affect the steepness of the CPC especially for initial carbon prices below 

US$100. Higher productivity growth translates into higher temperature increases on its own. 

However, a more nuanced view recognizes that decarbonization (Panel 3E) and TFP growth (Panel 

3F) are intimately related aspects of technological progress.  Namely, TFP growth will exacerbate 

climate change unless it is part of an offsetting transformation towards cleaner production.  
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4. Implications for Policy and Model Evaluation 

Climate policies come in many forms, including carbon prices and emissions trading 

systems as well as many policies without an explicit price per ton of CO2, such as efficiency 

standards, clean-energy subsidies, and pledges to achieve net zero emissions. CPCs can be a useful 

policy tool by enabling a comparison of various policies, quantifying the climate outcomes of such 

policies, and elucidating the uncertainty in obtaining those outcomes. 

For example, CPCs can crystalize the importance of comparing climate policy today with 

its future path. Different combinations of these two components can lead to similar climate 

outcomes: An initial effective carbon price of US$50 that grows at 6% each year and an initial 

price of US$160 that grows at 2% both appear likely to limit the global temperature increase in 

2100 to below 2°C. These different carbon price paths starkly illustrate the choice of climate 

mitigation burden-sharing across generations: the tradeoff between today’s climate policy setting 

and the burden on future generations. Accordingly, CPCs can help frame and navigate the difficult 

choices between near-term ambition and procrastination. In addition, CPCs can highlight the 

fundamental role of uncertainty in these choices as shown in Figures 1 and 3.  

CPCs can also serve as a useful summary metric for IAM evaluation and comparison. In 

particular, contrasting the CPCs obtained from different types and calibrations of IAMs can 

provide a straightforward means to compare the key implications of these models and to highlight 

differences in climate policy implications.  Along these lines, CPCs can serve as a useful model 

diagnostic tool that illuminates important policy tradeoffs in model comparison exercises (see, 

e.g., Harmsen et al., 2021; Kriegler et al., 2015). As an example, Figure 4 plots each of the different 

model simulations from the IPCC AR6 (Byers et al., 2022) as grey dots in the carbon price and 

temperature space. The black line fits a power function to these data and provides the composite 

“AR6-CPC” that is implicit in the diverse AR6 model runs, which feature a wide variety of 

modelling choices and carbon price paths. For a range of 2025 carbon prices between US$35 and 

US$95, the AR6-CPC settles between our CPCs based on the updated DICE model with constant 

carbon price growth rates of 4% and 6% (the green and blue lines). While the AR6-CPC suggests 

that carbon prices below US$35 are more effective in reducing temperatures as compared to the 

6%-CPC; however, above US$95, the AR6-CPC is rather insensitive suggesting that a carbon price 

is less effective than the 4%-CPC. 
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Figure 4 | AR6-CPC. Comparison of DICE-based CPCs with a CPC fitted to AR6 model simulations. The grey dots 

represent AR6 data on the 2025 carbon price and the global‐mean surface air temperature (GSAT), and the black line 

fits a power function to these data.  The green and the blue line are the CPCs based on an updated DICE model with 

4% and 6% carbon price growth rates. See Appendix D for a description of methods. 

 

By focusing on the essential mapping from climate policy to climate outcomes, CPCs can 

assist in understanding complex climate-economy interactions. They provide a novel and powerful 

summary of climate policy that can help calibrate, assess, and communicate that policy. The broad 

range of CPCs we have considered underscore that while policy-makers can, to some degree, trade-

off initial policy ambition with mitigation burden delayed on future generations, attaining the UN 

climate targets will require setting in place sizable carbon prices, or their regulatory equivalents, 

in the near future. 
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Appendix 

We calculate climate policy curves (CPCs) using the DICE 2016R2 model (Nordhaus 2018) as 

updated by Hänsel et al. (2020). The DICE model updates provide a more accurate calibration of 

the carbon cycle and energy balance model, improved climate damage estimates, an updated 

timing of the availability of negative emissions technologies, and updated projections of non-

industrial emissions.2  

A. Methods for Figure 1: Climate policy curves  

To calculate the CPCs implied by the model, we use the optimality condition for the carbon price 

paths that would result in a first-best setting. Accordingly, the first-best optimal carbon price 𝑝𝑝𝐶𝐶𝑂𝑂2
∗  

must be equal to the marginal cost of emission, which in DICE (cf. Nordhaus 2018) is: 

𝑝𝑝𝐶𝐶𝑂𝑂2
∗ (𝑡𝑡) = 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) 𝜇𝜇(𝑡𝑡)𝜃𝜃2−1.                                         (1) 

Note that time 𝑡𝑡 is measured in increments of five years with 𝑡𝑡 ∈ [0; 100], and  𝑡𝑡 = 0 corresponds 

to the year 2015. All prices are in 2010 US$ (purchasing power parity corrected).  The optimal 

carbon price path 𝑝𝑝𝐶𝐶𝑂𝑂2
∗ (𝑡𝑡) is modelled to depend on the time path of the price of a generic backstop 

technology, 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (𝑡𝑡); a technology, like wind energy or solar PV, that is expected to be capable 

of replacing CO2 –intensive energy production by 100% at some future date. In the baseline 

parametrization, the price of the backstop is assumed to be $550 per tonne of CO2 in 2020, and to 

decline by an exogenously given rate of half a percent per year. Furthermore, the carbon price 

depends on the emissions control rate 𝜇𝜇(𝑡𝑡) capturing the fraction of industrial CO2 emissions that 

                                                 
2 The model is written in the AMPL programming language and solved with the Knitro optimization solver (version 
12.4). 
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is abated in each period. Finally, the calibration parameter 𝜃𝜃2 = 2.6 reflects the convexity of the 

marginal abatement cost function, i.e., that the marginal cost of emission abatement increases the 

more emissions are already abated.  

In order to compute the CPC as a mapping of a current given non-optimal carbon price to the future 

level of global temperature, we proceed in three steps. 

First, we solve the carbon price equation (1) for the emission control rate 𝜇𝜇(𝑡𝑡), which we require 

to be bounded above by 1 (maximal 100% emission control) until the last period 𝑁𝑁 before negative 

emissions technologies are available, and 1.2 thereafter (c.f. Nordhaus, 2018). For the baseline 

(best) estimate we set 𝑁𝑁 = 6, i.e., negative emission technologies are available from 2050 onwards 

following recent IPCC reports and Hänsel et al. (2020). 

𝜇𝜇(𝑡𝑡) =

⎩
⎪
⎨

⎪
⎧min �1.0, �𝑝𝑝𝐶𝐶𝑂𝑂2

(𝑡𝑡)

𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡)
�

1
𝜃𝜃2−1� , 𝑖𝑖𝑖𝑖 𝑡𝑡 ≤ 𝑁𝑁 

min �1.2, �𝑝𝑝𝐶𝐶𝑂𝑂2
(𝑡𝑡)

𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡)
�

1
𝜃𝜃2−1� , 𝑖𝑖𝑖𝑖 𝑡𝑡 > 𝑁𝑁

                                               (2) 

Second, we assume an exogenous carbon price path that grows exponentially, until it hits the 

backstop price, at the per-period rate 𝑔𝑔: 

𝑝𝑝𝐶𝐶𝑂𝑂2(𝑡𝑡) = 𝑝𝑝𝐶𝐶𝑜𝑜2(0) 𝑒𝑒𝑔𝑔𝑡𝑡.                                                                              (3) 

For a given initial carbon price, 𝑝𝑝𝐶𝐶𝑜𝑜2(0), and carbon price growth rate, 𝑔𝑔, equations (2) and (3) 

together determine an exogenous non-optimal path for the emissions control rate. The non-optimal 

time path of the emissions control rate reflects the abatement of industrial emissions that is 

incentivized by a particular exogenously given carbon price path and thereby determines the 

dynamics of global temperature increases.  

Third, we solve the updated DICE model as in Hänsel et al. (2020) subject to the pre-specified 

exogenous path for the emission control rate according to equation (2) and (3) and calculate the 

resulting global temperature increases. All other model equations including social welfare remain 

unaffected and calibrated according to the main specification in Hänsel et al. (2020).3  

                                                 
3 Specifically, we use the central estimate for welfare parameters in Hänsel et. al (2020) implying a rate of pure time 
preference of 0.5% per year and a unit value for the elasticity of marginal utility (cf. Drupp et al., 2018). 
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In our CPC analysis we use 𝑝𝑝𝐶𝐶𝑂𝑂2(2), i.e., the carbon price in 2025, as our independent variable, 

which is the next possible planning step. As the outcome variable, we plot either (a) the change of 

the atmospheric temperature in 2100, or (b) the peak atmospheric temperature change over the 

whole time horizon from 2010-2510, in both cases relative to the 1850-1900 pre-industrial level. 

These two alternative outcome variables are both useful for policy analysis in their own right, as 

we discuss in the main text.  

The uncertainty ranges in Figure 1 are based on varying the equilibrium climate sensitivity (ECS), 

i.e., the temperature resulting from a doubling of atmospheric carbon. The ECS represents a key 

source of uncertainty with respect to carbon price sensitivity, and its quantification has been the 

subject of extensive prior research. In our simulations, we vary ECS within the range considered 

in the latest ECS assessment (Sherwood et al., 2020) and IPCC’s Sixth Assessment report. This 

includes a ‘likely’ range of 2.5°C-4°C and best estimate of 3°C.  

 

B. Methods for Figure 2: Climate policy choices and the UN climate targets  

Figure 1 in the main paper presents CPCs for three illustrative carbon price growth rates. In order 

to depict a more comprehensive possibility space for the link between climate policy and climate 

outcomes, we calculate and plot heatmaps. Using color codes, these heatmaps show in two 

dimensions the temperature increases in 2100 and their peaks that result from a broad combination 

of initial carbon prices and growth rates. To obtain these, we solve the updated DICE model 8600 

times, while for each run we (i) draw 𝑝𝑝𝐶𝐶𝑂𝑂2(0) from a uniform distribution on the interval [$2, 

$200] and (ii) vary the yearly carbon price growth rate in 0.1% steps on the interval [0%, 8%].  

We use the heatmaps to illustrate the combinations of initial carbon prices and growth rates that 

are in line with the 1.5°C and 2°C UN temperature targets. To calculate these contour lines within 

the depicted two-dimensional space of prices and growth rates we use the algorithm implied by 

the “dgrid3d” option of gnuplot version 5.2 that converts the plotting data into a suitable grid data 

format.  Specifically, we use a grid of size 12 by 12 and a norm value of 4. The norm parameter is 

used to inversely weight each data point by its distance from the grid raised to the norm power.  
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C. Methods for Figure 3: Climate policy curve uncertainty  

Figure 3 of the main text shows the effect of six sources of parameter uncertainty on the estimated 

slope and shape of the CPCs. We consider alternative parameterizations for the availability of 

negative emissions technologies (e.g., direct air capture), the cost of carbon abatement 

technologies, the emissions of greenhouse gasses other than CO2, and the growth rates of 

population, decarbonization, and total factor productivity (TFP). There is little guidance in the 

literature about the appropriate empirical probability distributions for these six parameters, so our 

CPC uncertainty analysis using these parameter variations is more exploratory.  

Negative emissions availability 

In the DICE model, the dynamics of industrial emissions 𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼(𝑡𝑡) is given by  

𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼(𝑡𝑡) = 𝜎𝜎(𝑡𝑡) 𝑄𝑄(𝑡𝑡) �1 − 𝜇𝜇(𝑡𝑡)�,                          (4) 

where 𝑄𝑄(𝑡𝑡) is global output, 𝜎𝜎(𝑡𝑡) the CO2-intensity of output and  𝜇𝜇(𝑡𝑡) is the emissions control 

rate. The availability of negative emissions technologies (NETs) is then simply modelled by an 

upper bound for the emissions control rate 𝜇𝜇(𝑡𝑡) at a particular point in time 𝑡𝑡.  In equation (3), we 

denote by 𝑁𝑁 the last time period 𝑡𝑡 with a maximal emissions control rate of 𝜇𝜇(𝑡𝑡) = 1 (maximal 

100% emission control), i.e. the last period before NETs are available. As in Nordhaus (2018), 

𝜇𝜇(𝑡𝑡) is bounded above by 𝜇𝜇(𝑡𝑡) = 1.2  thereafter, i.e. NETs allow for a maximum of 20% of 

industrial emissions to be taken out of the atmosphere for each period 𝑡𝑡. For the baseline (best) 

estimate, we set 𝑁𝑁 = 6, i.e., NETs are available from 2050 onwards following recent IPCC reports 

and Hänsel et al. (2020). As a curve shifter, we explore the implications of a 50 year later 

availability by 2100 corresponding to 𝑁𝑁 = 16. Figure C1 depicts the dynamics of industrial CO2 

emissions for different initial carbon prices 𝑝𝑝𝐶𝐶𝑂𝑂2(0) (assuming the same 4% carbon price growth 

rate) and different time horizons for the availability of NETs. The figure shows that for low initial 

carbon prices, like $10, the time path of industrial emissions is independent from the availability 

of NETs. For medium to high(er) initial carbon prices, here $50-$100, the time horizon until NETs 

are available affect the emissions time path and thereby the increase in global temperatures.  
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Figure C1: Industrial Emissions 

 
Figure C1 | Industrial Emissions. Dynamics of industrial CO2 emissions for different initial carbon prices 𝑝𝑝𝐶𝐶𝑂𝑂2(0) 
with the same 4% growth rate and different time-horizons for the availability of negative emissions technologies.  

 

Backstop price  

We use variations of the exogenous time path of the price of the generic backstop technology 

𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) to capture uncertainty about abatement costs. Equation (2) clearly shows that 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) is 

a major determinant of the time path of the emissions control rate 𝜇𝜇(𝑡𝑡) that results from a particular 

carbon price path 𝑝𝑝𝐶𝐶𝑂𝑂2(𝑡𝑡). Given the backstop price in the first period 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(0), the exogenous 

time path of the backstop evolves according to 

 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) = 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡 − 1) (1 − g𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏),                          (5) 

with g𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 0.025 being the per-period decline rate. The initial backstop price 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(0) and its 

decline rate g𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 are calibrated such that the marginal abatement costs, i.e. the carbon price, is 

equal to the backstop price at the time of zero emissions. To calculate how the best-guess CPC 

shifts as a result of different scenarios on the cost development of the backstop, we recalibrate the 

initial backstop price and its decline rate to the interquartile range of pathways of emissions and 

carbon prices of the IPCC AR6 model runs (AR6 Scenario Database 2022) that have at least a 67% 

probability of staying below 2°C. From this set of model runs, we extract the time of zero emissions 

within the interquartile range and the corresponding carbon prices in that year. The interquartile 



 18 

range (IQR) for the year of zero emissions ranges from 2080 to post-2100 with carbon prices 

ranging from $321-$637 at the time of zero emissions.4 In a next step we calibrate 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(0) and 

g𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 to best match the IQR from the AR6 modelling data. The calibration for the first quartile 

and the resulting time path for the backstop almost coincides with the standard DICE 2016R2 

parametrization. Thus, we stick to that parametrization as our best-guess while using the 

parametrization for the third quartile as a curve shifter. Table C1 summarizes the resulting 

parametrization and Figure C2 plots the resulting trajectories for the backstop price. 

 Best-Guess Range Up 

𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(0) $550 $750 

g𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 0.025 0.0125 

Resulting backstop price in 2050, 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(7) $461 $687 

   
Tab.C1 | Summary of parametrization for the backstop technology as a CPC curve shifter.  

Figure C2: Backstop Price 

 

Figure C2 | Backstop Price. Time paths for the exogenous backstop price for two different parametrizations: The 

best-guess (black line) is the standard Nordhaus (2018) specification and almost coincides with the lower interquartile 

rate of IPCC AR6 model runs. The upper range (green line) is a parametrization that resembles the upper interquartile 

range of the AR6 model runs. 

                                                 
4 The IQR for 2025 carbon prices for that path is $33-74$. 



 19 

Non-CO2 forcings 

In the DICE model, the time path for total radiative forcing is given by 

𝐹𝐹(𝑡𝑡) = 𝜅𝜅 
log𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡)

𝑀𝑀𝑀𝑀𝑀𝑀𝐸𝐸
log2

+ 𝐹𝐹𝑒𝑒𝐹𝐹(𝑡𝑡),                                       (6) 

where 𝜅𝜅  is forcing of equilibrium CO2 doubling, 𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡) is atmospheric carbon in period 𝑡𝑡, 𝑀𝑀𝑀𝑀𝑀𝑀𝐸𝐸 

is the equilibrium (pre-industrial) concentration of atmospheric carbon and 𝐹𝐹𝑒𝑒𝐹𝐹(𝑡𝑡) are exogenous 

non-CO2 forcings. The standard DICE 2016R2 version assumes that 𝐹𝐹𝑒𝑒𝐹𝐹(𝑡𝑡) linearly increases 

from 0.5 W/m2 in 2015 to 1 W/m2 in 2100 and remains constant thereafter. For our best-guess we 

follow the updated DICE version (Hänsel et al., 2020) assuming that the management of non-CO2 

forcings is in line with, e.g., the Representative Concentration Pathways (RCP) 2.6 and 4.5 or the 

Shared Socioeconomic Pathways (SSPs). Specifically, the exogenous path for non-CO2 forcing is 

calibrated to match the REMIND integrated assessment model using the SSP2 2.6 scenario 

peaking at 0.59 W/m2 in 2055 and decreasing to 0.33 W/m2 by 2100. Figure C3 compares our best-

guess estimate (black line) for non-CO2 forcings to the standard DICE 2016R2 pathway (green 

line), which we use as a CPC curve shifter.  

Figure C3: Non-CO2 forcings 

 

Figure C3 | Non-CO2 forcings. Time paths for exogenous non-CO2 forcings for two different parametrizations: The 

best-guess (black line) is Hänsel et al. (2020) specification taken from the REMIND model that is compatible with the 

UN climate targets. The upper range (green line) is the Nordhaus (2018) specification. 
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Population 

Given the initial level of global population 𝐿𝐿(0) the exogenous population development in DICE 

2016R2 is given by  

 𝐿𝐿(𝑡𝑡) = 𝐿𝐿(𝑡𝑡 − 1) � 𝐿𝐿�

𝐿𝐿(𝑡𝑡−1
�
𝑔𝑔𝐿𝐿

,                           (7) 

where 𝐿𝐿� is an assumed asymptotic population size and 𝑔𝑔𝐿𝐿 is the per-period growth rate calibrated 

to meet UN projections for the size of the global population in 2050. In this paper we recalibrate 

𝐿𝐿� and 𝑔𝑔𝐿𝐿 in (7) to meet the 95% confidence level of 2050 population projections summarized in 

the latest 2022 UN report on that matter (United Nations 2022). The report estimates the mean 

global population to grow to 9400 million people by 2050 with a 95% confidence interval ranging 

from 9400 to 9700 million people. Despite these new estimates the standard DICE 2016R2 

calibration still seems to be a good middle-of-the-road assumption and thus we stick to it for the 

best-guess estimate. Table C2 summarizes the parametrization and Figure C4 shows the resulting 

population dynamics until the end of the century.  

 

 Range Up Best-Guess Range Low 

𝐿𝐿� 14500 11500 10000 

𝑔𝑔𝐿𝐿 0.08122 0.134 0.2022 

   
Tab. C2 | Summary of parametrization for the backstop technology as a CPC curve shifter.  
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Figure C4: Population 

 

Figure C4 | Population. Time paths for exogenous global population development for three different 

parametrizations: The best-guess (black line) is the standard DICE 2016R2 assumption while the upper range (green 

line) and the lower range (red line) correspond to the 95% confidence interval of the 2022 UN population projections.   

 

Decarbonization 

Given its initial value in the first period 𝜎𝜎(𝑡𝑡) the time path for the CO2-intensity of output in DICE 

2016R2 reads 

𝜎𝜎(𝑡𝑡) = 𝜎𝜎(𝑡𝑡 − 1) 𝑒𝑒5𝑔𝑔𝜎𝜎(𝑡𝑡−1),                 (8) 

where 𝑔𝑔𝜎𝜎(𝑡𝑡) = 𝑔𝑔𝜎𝜎(𝑡𝑡 − 1)(1 + 𝛿𝛿𝜎𝜎)5 and 𝑔𝑔𝜎𝜎(0) given.  

As curve shifters we consider the 95 percentile range for the initial growth rate 𝑔𝑔𝜎𝜎(0)  from 

Nordhaus (2018) with a mean of -1.5% per year and standard deviation of 0.32% (95 percentile 

range from -0.88% to -2.16%). The resulting dynamics for 𝜎𝜎(𝑡𝑡) is plotted in Figure C5. 
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Figure C5: CO2-intensity output 

 

Figure C5 | CO2-intensity output. Time paths for the exogenous CO2-intensity of output for three different 

parametrizations: The best-guess (black line) is the standard DICE 2016R2 assumption while the upper range (green 

line) and the lower range (red line) correspond to the 95% confidence interval in Nordhaus (2018).   

 

Total factor productivity (TFP) growth 

Total factor productivity is exogenous in the DICE 2016R2 model and evolves according to 

𝑀𝑀(𝑡𝑡) = 𝐴𝐴(𝑡𝑡−1)
1−𝑔𝑔𝑀𝑀(𝑡𝑡−1)

,                             (9) 

where 𝑔𝑔𝐴𝐴(𝑡𝑡) = 𝑔𝑔0𝐴𝐴 𝑒𝑒−𝛿𝛿𝑀𝑀5𝑡𝑡 and 𝑀𝑀(0) is given.  

As curve shifters we consider the 66 percentile range for the initial rate of productivity growth 𝑔𝑔0𝐴𝐴 

as used in Nordhaus (2018) and Gillingham et al. (2018). The range has a mean of 1.48% p.a. with 

a standard deviation of 0.93% leading to a 66 percentile range between 0.55% to 2.41%.  
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Figure C6: TFP growth 

 
Figure C6 | TFP growth. Time paths for the exogenous rate of total factor productivity growth (TFP) for three 

different parametrizations: The best-guess (black line) is the standard DICE 2016R2 assumption while the upper range 

(green line) and the lower range (red line) correspond to the 95% confidence interval in Nordhaus (2018) and 

Gillingham et al. 2018.  

 

D. Methods for Figure 4: AR6-CPC  

So far our analysis has only relied on the DICE 2016R2 integrated assessment model as updated 

in Hänsel et. al (2020). To explore how the CPCs derived from this modelling framework compare 

to a more diverse set of models and modelling assumptions we use the IPCC AR6 Scenario 

Database (2022) to trace out the relationship between carbon pricing and temperature increase 

across AR6 model runs. From the raw data, we’ve extracted data on the 50.0th Percentile of 

Surface Temperature (GSAT) forecast for the year 2100 from the FaIRv1.6.2 model and carbon 

prices in US$2010/t CO2 for the years 2025, 2030, 2050 and 2100 for 1665 model runs. We 

excluded runs where temperature in 2100 was not available (N=157), thus leaving 1507 model 

runs. We inflated all carbon prices to US$2020/t CO2, multiplying by 1.09. We then replaced all 

non-existent or zero values in specific years – mostly in year 2025 – by a carbon price of 0.01 

US$2010/t CO2 to be able to calculate growth rates. Next, we calculated an exponential growth 

rate of the carbon price from 2025 to 2100. To compute the AR6-CPC equivalent to the ones 

derived from the updated DICE model, we base the AR6-CPC on all 875 data point pairs of 2025 
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carbon prices in-between $2 and $200 and 2100 temperatures. Specifically we apply the nonlinear 

least-squares Marquardt-Levenberg algorithm of gnuplot version 5.2 to fit a power function of the 

form 𝑖𝑖(𝐹𝐹) = 𝑎𝑎 𝐹𝐹𝑏𝑏 to the modelling data.5 The estimated parameters and summary statistics of the 

non-linear fitting procedure are summarized in Table D1.  

 

Non-linear fitting statistics for AR6-CPC 

Sum of squares of residuals 143.808 

Degrees of freedom 873 

Standard deviation of residuals 0.405868 

Variance of residuals 0.164729 

Final set of parameters Asymptotic Standard Error 

a = 2.90217 +/- 0.07751 

b = -0.142065 +/- 0.007941       

Tab. D1 | Non-linear fitting statistics for AR6-CPC and final set of parameters 

 

Figure 4 in the main text shows the AR6 modelling data and the resulting AR6-CPC and compares 

them to the CPCs with the constant 4% and 6% growth rates based on the updated DICE model 

used in this paper. Figure 4 illustrates how the CPCs based on the updated DICE model by Hänsel 

et al. (2020) with constant growth rates of carbon prices relate to a CPC derived from the diverse 

set of models and assumption used in the IPCC AR6 report.  

 

 

 

 

 

                                                 
5 We have also tested the power function specification against alternative functions of the form 𝑖𝑖(𝐹𝐹) = 𝑎𝑎 ln(x) + b 
(log-specification) and 𝑖𝑖(𝐹𝐹) = 𝑎𝑎x + b (linear specification). Among these functional forms, the power function 
specification minimizes the sum of squared residuals, which we used as the relevant criterion. 
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